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Abstract 

A phase relationship involving triplet and quartet con- 
tributions is given. It is able to take account of the 
correlation between triplet and quartet relations. The 
information exploited by the formula is discussed and 
compared with that exploited by phase relationships 
arising from the properties of the Fourier transform of 
periodic positive f_unctions. In particular, the infor- 
mation contained in a Karle-Hauptman determinant of 
low order is briefly considered. 

I. Introduction 

The properties and the use of quartet relations in direct 
procedures can be approached from two basic points of 
view: (a) the properties of the Fourier transform of 
periodic positive functions (i.e. the electron density 
function); (b) the application of joint probability dis- 
tribution methods. We show in this paper that phase 
relations based on (a) hold only if some restrictive con- 
ditions are satisfied. On the other hand, phase relations 
based on (b) can be extensively applied in the usual pro- 
cedures for phase solution. In practice, the probabilistic 
approach can provide phase relations more useful than 
those provided by (a). 

Triplet and quartet relations can be used together in 
phase-determination processes. Since a quartet is the 
sum of two triplets, a strong correlation may exist 
between the sets of estimated triplets and quartets. 
Unfortunately, triplets and quartets have been used so 
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far as independent relationships. In practice this 
assumption can lead to undesirable effects, e.g. to the 
'squaring' effect of E 2 relationships the 'cubing' effect 
of quartet relations is added. In this paper a formula is 
given, involving triplet and quartet relations, which is 
able to take account of the correlation between the two 
kinds of phase relationships. 

The value of Karle-Hauptman determinants of low 
order is mostly determined by triplet and quartet con- 
tributions. We discuss the information contained in 
such determinants and briefly compare it with the 
information exploited in our probabilistic approach. 

2. Phase relations arising from the Fourier transform 
offf'(r) 

For a structure containing atoms which are fully 
resolved from one another the operation of raising p(r) 
to the nth power retains the conditions of resolved 
atoms but changes the shape of each atom. In practice 
it is possible to substitute, with an accuracy quite 
sufficient for the purpose of structure analysis, p(r) by a 
sum of N spherically-symmetrical atomic functions: 

N 
p(r) = X p~( r -  r ) .  

j= l  

pj(r) is an atomic function and rj is the coordinate of 
the center of the atom. When a function is periodic, its 
nth power is periodic with the same unit cell but with a 
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different set of Fourier coefficients. Since the atoms do 
not overlap, 

p~(r) = pj(r -- rj ~-- Z p~(r -- r j) 
j =  1 j =  1 

and its Fourier transform gives 

nFh= f f ( r )  exp (27dhr) dV 
V 

N 

= y. fp'](r-u)exp(2za'hr)dV 
j= l  V 

N 

= ~ nfj exp 2mhry. 
j = l  

, f j  is the scattering factor for thej th  peak of pn(r), 

n f j =  f p~(r) exp (2~/hr) dr. 
V 

If all atoms are equal so that f j  - f and , f j  - , f  for 
any j,  then 

Fh-- ( f  /nf) ,Fh= On ,,Fh, (I) 
where 0 n is a function which corrects for the difference 
in shape of atoms with electron distributions p(r) and 
p~ (r). Since 

1 +oo 

pn(r) = V --'~ Z Fh,'"Fh.exp[--27ri(h' + "'" + hn)r], 
h, ..... h. 
--OO 

the Fourier transform of both sides gives 

1 +c o  

V n -  , ~ L  Fh, Fh,"" F h - - h , - h 2 - -  . . . .  h ._ , '  nFh 
ht , ' " ,hn-  t 

--00 

from which the following relation arises: 

1 +oo  

Fh : On W n - '  Z Fh' F h 2 " "  F h - - h ' - - h 2 -  . . . .  h._," (2) 
h, ..... h n _, 

--oO 

For n -- 2, (2) reduces to Sayre's (1952) relation 

I 
Fh--- O2--~ ~ FkFh_ k. (3) 

As assumed above, relations such as (2) are valid only 
when atoms are all of the same type and are fully 
resolved; their application requires that f ( r )  is known. 
In reciprocal space this condition requires that all 
phases (of measured and unmeasured reflections) are 
known. This restrictive condition cannot be satisfied in 
practice. However, if the set of known phases is 
sufficiently large, then it may be considered as a 

unbiased sample of the entire population of phases. In 
this case (2) approximately holds. 

3. Phase relations arising from the Fourier transform 
of linear combinations of powers ofp(r) 

If the structure contains resolved isotropic atoms of 
two types, P and Q, it is impossible to find a factor 02 
such that the relation F h -- 02 2Fh holds, since this would 
imply values of 02 such that (2f)p -- 02(f)v and (2f)o -- 
02(f)Q simultaneously. Then (3) does not hold exactly. 
The Sayre relation, however, can be suitably modified 
for this case (Fan, 1965; Krabbendam & Kroon, 1971). 
A different approach was introduced by Woolfson 
(1958) who intrduced quartet invariants to correct the 
Sayre relation, 

As Bs 
Fh~__---~ZFkFh_ k -- V-'-'-~ZFkFIFh_k_I, (4) 

k k, 1 

where A s and B s are adjustable positive parameters of s 
= sin 0/2. Equation (4) can be generalized to structures 
containing resolved atoms of more than two types: 

As Bs 
F h ~ T  Z FkFh-k +----~ Z FkF, Fh-k-, 

k k, 1 

Cs 
+ V-----7 Z FkFIFpFh-k-I-P + "'" 

k.l,p 

The procedure so far described can be adapted to 
structures consisting of point atoms. For example, von 
Eller (1973) showed, for a point-atom structure with 
atoms of two types, that 

Z, + Z 2 
E b -- - -  o.2 u2 < Ek Eh--k>k 

Z, Z 2 

0" 2 
- -  <EkE, Eh_k_,>k, ,, (5) 
Z I Z 2 

where Z,  and Z 2 are the atomic numbers of the first 
N and second atomic species and o 2 = Y j=, Z]. 

It may be concluded that (4) and (5) are valid only 
when two types of atoms are in the structure and 
the atomic electron densities are fully resolved. Their 
application requires that pE(r)  and p3(r) are known. In 
reciprocal space this condition requires again that all 
phases are known. The Fourier transform of (4) and (5) 
gives 

p ~ al p2 __ a2 p3, (6) 

where a 1 and a 2 are positive parameters which are 
chosen so that p - (a I p2 __ a2 p3)  is a minimum. If all 
the atoms are of the same type, a 2 = 0 and quartets do 
not appear in (4) and (5). A condition related to but not 
identical with (6) was proposed by AUegra & Colombo 



76 TRIPLET AND QUARTET RELATIONS 

(1974), according to which the difference between the 
real and the squared structure must approach zero. 
Therefore the integral 

f [p2(r) / I2-  p(r)/I~] 2 dr ,  (7) 
V 

where I n = J'vP~(r)dV, must be as small as possible. 
From (7), we can obtain 

tan tph~_ {~k IEkEh-kl sin(~0k + ~0h-k) 

- - A  ~. IgkEtEh_k_ll sin (tpk + tpl + (~h_k_l) 1 
k,I ) 

X {~k  I E k E h - k l  COS((ffk4- (ffh-k) 
k 

- A  z IEkEiEh_k_ll COS (q7 k 4- (Pl 4- ~0h-k-I)/' 
k,I ) 

(8) 

where A = Eo/2 ~.k E2. 
As well as (4) and (5), (8) strictly holds when all the 

phases are known. However, unlike (4) and (5), 
quartets appear in (8) even if the atoms are of the same 
type. 

4. Phase-refinement techniques in direct space by 
modification of the electron-density distribution 

Several criteria can be found which modify the 
electron-density distribution: Simonov (1976) proposed 
modification of p(r) by the following relationship 

[ p(r) if p(r) > ql 
pm°d ( r) = ( q 2 if p( r) < q l , (9) 

where qt are suitable parameters; Hoppe, Gassmann & 
Zechmeister (1970) proposed the substitution of p(r) by 

pm°O (r) ~_ap(r) + bp2(r) + cp3(r), (10) 

where a, b, c are chosen so that the weak peaks in the p 
map decrease further, peaks of average height remain 
at the previous level and strong peaks somewhat 
decrease. The equivalent of (9) in reciprocal space is 

F~h °d ~ aF h + b ( F  k Fh_k) k + c(F  k F I Fh_k_l)k,i, 

which is very similar to (4) and (5); Collins (1975) pro- 
posed the following modification: 

pm°d (r) = 3p2( r ) - -Zp3( r ) i f p ( r )>O (11) 
pmOd (r) = 0 if p(r) _ 0. 

Equation (11) should increase resolution and sharpness 
at low-density levels and leave the largest peaks un- 
changed. The similarity between (10), (11) and (6), (7) 

suggests that refinement techniques such as those 
described in this paragraph can be applied only if 
conditions nearly identical to those described in § § 2 
and 3 are satisfied. 

5. A fundamental property of the probabiUstie 
approaches 

Procedures described in §§ 2, 3, 4 assign phases both 
by expressing p(r) via a linear combination of suitable 
powers of p(r) and by exploiting the condition p(r) _> 0. 
A proper choice of the parameters in the linear com- 
binations of the powers of p(r) can in principle allow the 
introduction of some additional chemical information 
about the structure. Although such relationships 
proved useful in several cases, they have two undesir- 
able weak points: 

(a) they are strictly applicable only when both the 
number and the quality of known phases are sufficient- 
ly high to provide, after a Fourier transform, a good 
approximation of p(r). That may be a critical condition 
in some cases. For example, in protein crystallography 
both the atomicity and the non-negativity conditions of 
the electron density function can be violated if data do 
not extend to atomic resolution (d > 2/~) or phases are 
not sufficiently accurate; 

(b) they are unable to exploit information about 
diffraction magnitudes when corresponding phases are 
unknown. Representations theory (Giacovazzo, 1977a) 
showed in fact that, for any structure seminvariant, it is 
possible to arrange the set of diffraction magnitudes in 
a sequence of expected effectiveness (in the statistical 
sense) for the estimation of ~. In particular, any 
structure seminvariant depends, in its first rep- 
resentation, on the set of magnitudes contained in the 
first phasing shell. This set contains both the basis and 
the cross magnitudes of the seminvariant. 

A triplet invariant is a particular case in the family of 
invariants because its cross magnitudes coincide with 
its basis magnitudes. On the contrary, a quartet 
invariant depends in its first representation, besides the 
four basis magnitudes, on at least (Giacovazzo, 1976b) 
three cross magnitudes; a quintet invariant on at least 
ten magnitudes, etc. If upper representations are intro- 
duced into calculations then any invariant or semin- 
variant can depend on many magnitudes. These results 
suggest that a phase may be accurately evaluated pro- 
vided a suitable set of phases and a sufficiently large 
number of magnitudes are known. As a simple 
example, let us suppose that we want to estimate ~0 h 
when the values of (~k, (ffP (ffh-k-I and the corresponding 
I E l's are known. Then we can write 

~0 h ~ '  ~0 k -a t- ~01 4- qTh_k_ I 

with a reliability proportional to ]EhE k E I Eh_k_;l/N. 
The evaluation appears inadequate (Hauptman, 1975; 
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Giacovazzo, 1975) if the cross magnitudes of the 
quartet (oh -- ( o k -  (Ol -  (oh--k-I are known too. The 
situation does not change if more quartets are used in 
order to estimate (o h . 

The example shows one of the fundamental proper- 
ties of the probabilistic approach; unlike relationships 
which arise from the properties of the electron density, 
probabilistic procedures are able to exploit information 
about magnitudes of structure factors even when the 
corresponding phases are unknown. This property has 
not been extensively used so far. We describe in the 
next paragraphs how information contained in the first 
representation of triplets and quartets can be exploited 
in order to assign and refine phases. 

6. The role and the use of quartets in direct procedures 

Different probabilistic procedures have been suggested 
which make use of quartets only. All are based on the 
atomicity and positivity properties of the electron 
density function. Among them: 

(i) Giacovazzo (1976a) proposed the tangent for- 
mula 

~. Gj sin ((ffk, "+" (Ply "+" (oh-kj-ll) 
Y 

tan (oh = 

GjCOS((Okj+ (oh+ (oh_ki_0 (12) 
J 

where 

Gj= 2Cj(1 + eh_k+ eh_b+ ek,+b)/(1 + Qj), (13) 

Cj = I E h Ek, E b Eh_k_bl/N, 

Qj  = [(eh •kl + ely eh-kl--I/)~h-kj + (eh eli + ek, eh-k,-I,)eh-Ii 

+ (e h eh--kFb + ek~ el)e~.l)/2N, 

e~ = ( E ~ -  1). 

If Qj < 0 then it was proposed to set Qj = 0. If some 
cross reflection is not measured then the corresponding 
e is replaced by zero. If the cross magnitudes are 
unknown, then Gj = 2Cj, and (12) reduces to the 
relation proposed by Simerska (1956), where no use is 
made of the cross magnitudes. 

(ii) Gilmore (1977) suggested a least-squares pro- 
cedure according to which the phase (O, is determined 
by the minimum in the function 

Z t j [cos(oj -b j] /~ ,  tj. 
J Y 

tj is the inverse of the estimated variance for ~j, ~ = 
(oh -- (ok, -- (oh- (oh-k,-~,' and bj is the estimated cosine 
for ~oj. 

(iii) Schenk & van der Putten (1978) proposed the 
modified tangent formula 

~, Cj sin ((Pkj + (oh + (oh-kj-Ii-- Sjlpj I) 
Y 

tan (oh -~ 

Z Cj cos ((ok, + (O~, + (oh-kF~,-- S j lp j  I) 
J 

where p j  is the estimated value of the quartet invariant 
and Sj = + 1 is chosen such that for each term the 
expression -(oh + (ok, + q~b + q~h-kj-b-- S Ipjl is closest 
to zero. 

Procedures (ii) and (iii) are more suitable than (i) for 
enantiomorph-specific refinement processes. Although 
these procedures seem very attractive (they are able to 
exploit distributions with maxima other than at 2n; 
furthermore, the number of available quartet relation- 
ships for each h is larger than that of triplets), they 
suffer some severe limitations. In fact, quartets are 
phase relationships of order N, so the number of reliable 
quartets may be small in spite of the large total number 
of estimated quartets, and it decreases with the 
structural complexity more rapidly than the number of 
reliable triplets. Furthermore, N can assume high 
values even in structures with a small number of inde- 
pendent atoms but high point symmetry. This effect 
can be minimized if maximum use of the symmetry for 
estimating quartets is made (Giacovazzo, 1976b). In 
fact, even if quartets with more than three cross 
magnitudes in the first phasing shell are a small 
percentage of the total number of quartets, they can 
constitute a large percentage of the most reliable 
quartets (Busetta et al., 1980). 

These considerations suggest that quartets should 
not be used alone in phasing procedures, but always 
associated with triplets. 

Giacovazzo (1976a) obtained by a probabilistic 
approach the following expression: 

tan (oh = Q/Q', (14) 

where 

Q = ~ A k sin ((ok + (oh-k) 
k 

+ ~ Gk, t sin ((ok + (Pt + (oh-k-t), 
kJ 

Q ' =  Y. Ak c°s ((ok + (oh-k) 
k 

+ ~ Gk, I COS (~0 k + ~01 + (oh-k-l),  
k,I 

A k =  2IEhEkEh_kI/VFN 
and G is defined by (13). Equation (14) has some 
advantages over previous formulae. In fact, the 
reliability of (oh in (14) may be estimated by 

ah = (Q2 + Q,2)1/2, 
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which suggests that (ffh may be determined by (14) with 
higher accuracy than by triplets or quartets separately. 
Furthermore,  the number of links which are weak in a 
convergence procedure using only triplets may be 
reduced if (14) is used. However, (14) deals with 
triplets and quartets as if they were independent 
relationships, and this is not the case. In order to assess 
this dependence in different practical conditions we 
recall some basic ideas presented by Giacovazzo 
(1977b). 

The quartet q~ = (Ph q" (Pk -at- (~1 -k- (Ph+k+l exploits in its 
first representation three (not independent) tripoles: 

ts = --~Ph- ¢Pk + ¢Ph+k, 

t2 = - - ( P l -  (Ph+k-Jr- (Ph+k+l; 

~1 = q', 

t3 = --¢Ph- ~Pl + (Ph+l' 

t4 = - - ¢ P k -  ¢Ph+t + ¢Ph+k+l; 

t5 = --qTk- qTI + ~Pk+l, 

t6 = --qTh--  qTk+l + (Ph+k+l" 

One o b t a i n s - @ = t ~ + t  2 = t  3 + t  4 = t  5 + t  6 .Thus the  
expected value of a quartet estimates three sums of two 
triplets. Three typical cases can be described: 

(a) Strong positive quartets. Let us suppose that all 
the reflections involved in the tripoles have magnitudes 
larger than Et, where E t is the minimum value of I EI 
chosen for carrying out phase determination by means 
of triplets. If E t is large enough and the probabilistic 
theories of triplets and quartets hold, then 

q0 ~_ t 1 ~_ t 2 ___ t6 ~ 0 .  

In this case some authors claim that quartets contain 
the same information as triplets. Though this is not 
quite true because the expected value of a quartet 
estimates sums of two triplets, the correlation between 
triplet and quartet information is very high. Therefore a 
phase refinement which uses triplets and quartet 
relationships as independent could emphasize the 
inadequacies of the standard tangent formula instead of 
improving it. From the point of view of direct space, a 
'cubing' effect should be added to the 'squaring'  effect 
of the triplet relationships, so that the procedure should 
tend to strengthen the dominant features of the 
structure. 

(b) Enantiomorph-sensitive quartets. Let us suppose 
all IEI 's  are larger than Et, except [Eh+ll and IEk+ll 
which are smaller. In this case tl and t 2 are the only 
triplets which are estimated in the phasing procedure. 
In particular, if q~h -- ~Pk ---- OPt -- 0, triplet theory gives 
(~h+k+l '~  0; on the other hand probabilistic quartet 
theories can give ~ ~ +7r/2 so that ~Ph+k+t = +7~/2. The 
dramatic change in the phase estimation occurs 
because quartet theory is able to exploit information 

not used by triplet theory (i.e. the knowledge that 
I E h +h I and I E h +h I are small). 

1 3 . 2 3 

(c) Negatwe quartets. If all the I E I's are larger than 
Et, except [Eh,+h2[, IEh,+h I, IE h +h I, which are near 
zero, no triplet appearing i~a the t~ip~les is estimated in 
the direct procedure. However, quartet theory enables 
us to estimate q ~ n. Information contained in 
categories (a), (b), (c) is differently correlated with 
information contained in triplets. This correlation 
decreases when we pass from category (a) to (c), so 
these categories can play different roles in direct pro- 
cedures. 

No convincing use has been made so far of triplets 
and quartets in category (a), whereas some specific use 
of categories (b) and (c) proved successful. 

Category (b). If N is not too large, some quartets are 
reliably estimated to be near + n/2. So they can be used 
to define a starting set which is completely enantio- 
morph specific. Enantiomorph-sensitive quartets can 
also be used as a figure of merit in non-centro- 
symmetric structures for recognizing the correct 
solution in multisolution approaches (van der Putten, 
1979; Gilmore, 1979). This figure of merit is defined as 

ENQ = ~ wl(C~t, i + Sil fl)e, tl), 

where q~t.i and ~e.i are the assigned and the estimated 
values of the ith quartet. S~ is a sign chosen such that 
each (~t.i + SilC19e.tl) is closest to zero, w i is pro- 
portional to the inverse of the variance for ~;. The 
correct solution should be among the smallest values of 
ENQ. 

Category (c). Although the number of reliable 
negative quartets is small compared with the number of 
triplets and positive quartets, they can be used success- 
fully for a figure of merit for selecting the correct 
solution in the multisolution procedures (Schenk, 
1974). The figure is expected to be more effective in 
symmorphic space groups because it exploits a kind of 
relation (negative invariants) which is not accessible to 
triplets (at least from their first representation). The 
most simple criterion is (Giacovazzo, 1976a) 

NQ = - ~ C(1 + eh+ k -+- eh+ I + tk+l) COS ~,  

where the summation goes over the quartets with small 
values of the cross magnitudes. The solution with the 
most negative value of NQ is expected to be the correct 
solution. An analogous figure of merit has been 
proposed by De Titta, Edmonds, Langs & Hauptman 
(1975); the negative quartets are selected by sharp cut- 
off parameters for C and cross magnitudes. 

At times negative quartets can be used in the first 
stages of a multisolution procedure (Silverton, 1978). 
Since the correct solution should have the most 
negative NQ value, it seems reasonable to use in the 
starting set some planes frequently occurring as basis 
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reflections in the set of estimated negative quartets. 
F rom the above considerations it can be seen that, from 
the probabilistic point of view, triplet and quartet 
relationships can be strongly correlated but they never 
exploit the same information. Their simultaneous use 
may be of great help in practice provided a suitable 
strategy is followed. 

In the next section we show how information avail- 
able at any stage of the phasing process may be 
exploited via triplet and quartet relations. 

If  one or more cross magnitudes are large, the 
conditions under which (15) and (16) have been derived 
usually occur only at the first stages of  practical pro- 
cedures. Often, besides magnitudes, the phases of some 
cross reflections are also known. The availability of this 
information introduces triplets in calculations. 

Let us suppose, for example, that (07 is also known. 
Then (15) is replaced by 

P((011 (07, . . .)  

7. A general formula using triplet and quartet 
relationships 

The seven magnitudes in the first phasing shell of 

(P = (oh "4- (ok -b (01- (0h+k+l 

are denoted by 

R~ = I E l l - - I E h l  ; ...;R4= ]E 4 ] = IEh+k+ll ; 

R 5 ----IEh+kl;R6= IEh+ll;R7 = IEk+ll; 

and e i = (R 2 -- 1). 
Let (05, (06, (07 be unknown and R 5, R6, R 7 be known. 

Developments of  the Hauptman (1975) quartet theory 
lead to the marginal probability density 

P((011RI, R 2 , . . . ,  R7,  (02, (03, (04) 

1 
~_ - -  exp [ - 4 C  cos ((01 + (02 + (03 - (04)] I0(R5 )(5) 

L 

× I o ( g 6 x  6) Io(g7XT), (15) 

where L is a suitable normalizing parameter,  and 

C = R 1 R E R 3 R 4 / N  , 

2 
Xs = - - ~  [R2 RE + RE R2 

+ 2NC cos ((01 + (02 + (03 -- (04)] 1/2, 

2 
X 6 = - - ~  [R~ g 2 + R2R 2 

+ 2NC cos ((01 + (02 + (03 - (04)] i/2, 

2 
X 7 = - - ~  [RE R~ + RE R42 

+ 2NC cos ((01 + (02 + (03- (04)] 1/2 

Under the same conditions, developments of the 
Giacovazzo (1976a) quartet theory lead to 

P((01 I R 1' '"  "' R 7, (02, (03, (04) 

1 
_ exp [G cos ((01 + (02 + (03 - (04)], (16) 

27d0(G) 

where G is defined according to (13). 

1 
_ - -  exp  1 R4 R7 cos  ((01 --  (04 + (07) 

L 

1 
-- 4C cos ((01 + (02 + (03 - (04) [ 

d 
x I0(R5 Xs)Io(g 6 2"6). 

If (06 and (/)7 are known, then 

P((01 [(06' (07, "" ") 

"~ m exp [RlR3R6cos((01 + (03-(06) 
L 

+ R 1 R4 R7 cos ((01 -- (04 -b (07)] 

2 
--  - -  [R1R2R6R7 cos  ((01 --  (02 --  (06 + (07) 

N 

- - 4 C  cos((01 4- (02 -b ( 0 3 -  (04)]/ Io(RsXs)" 
) 

If  (05, (06, (07 are known, then 

P((011(05, (06, (07, '") 

~ _ - - e x p  [ Ri R2 Rs cos ((01 Jr" (02--(/95) 
L 

+ Rl  R3 R6 c ° s  ((01 + (03 --  (06) + RI  R4R7 

2 
x cos ((01 - (04 + (07)] - - - -  [R1R2R6 R7 

N 

X COS ( ( 0 1 -  (02-- (06 q- (07) q- R 1 R 3 R s R 7  

× c°s  ((01 -- (003 - (05 + (07) + R I R 4 R s R 6  

x cos((01 + (04- ~Ps- (06) + 2R1R2R3R4 

COS ((01 + (02 q- (03 --  (04) ] } X 

1 
exp [a I cos (~Pl - 01)], 

27rlo(al) 
(17) 
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where tan 01 = T/Q, 

2 
Q =------~- [ R 1 R 2 R  5 cos (tp2- (o5) × ...] 

x / ~ v  

2 

N 
- - ~  [R1R2R6R7 COS((ff2 q- (if6-- (if7) -1- " ' ' ] '  

T = ~  
2 

/ - : .  [R1R2R5 sin (~02- (05) + ...] 
x/~v 

2 
- - ~  [ R 1 R 2 R r R  7 sin (tp2 + tp6 -- rp-)) + ...1, 

N 

al = [Q2 + T2]1/2. 

In practice it often occurs that some cross magnitudes 
are not measured. Suitable formulae can be found for 
these cases too, but are not given here for the sake of 
simplicity. An examination of the various cases leads to 
the general formula 

1 {V/- ~ exp ~ R h ~ RkjRh+k, 
j 

x cos (¢h + ¢Pk,-- Ch+k) -- 2 ~ Wj Cj 
J 

x cos((o h + (Ok+ ¢Pb--tPh+k,+l)} 
) 

X Io(R , X1).. .Io(RpXp), (18) 

where: 
(i) P(tphl...) is the conditional probability dis- 

tribution of ~0 h given any number of magnitudes and 
any set of phases; 

(ii) the first summation concerns all the triplets 
involving ~0hwith known phases tpk, rPh+k ; . . . .  ./ ./ 

(Ul) the second summation concerns all the quartets 
involving tph and known phases tpk ,, tpb, ~0h+k,+~ ,. The 
coefficient wj is 2, 1, 0, --1 according to whether 3, 2, 1, 
0 cross magnitudes of the j th quartet are known; 

(iv) the magnitudes R 1, ..., Rp which appear in the 
arguments of the I 0 functions correspond to the cross 
reflections of the quartets in (iii) provided their phases 
are unknown. 

The mode of the distribution (18), the mean value of 
tph and the variance can be obtained by numerical 
methods. 

Equation (18) does not deal with triplets and 
quartets as if they were independent relationships. 
Furthermore, it exploits all the information available at 
a given moment. If the a priori information available 
for ~0 h changes during the phasing procedure, the way in 
which (18) is applied changes too. 

The contribution of the terms I o in (18) is always sig- 
nificant, unless tph is estimated when all the measured 
reflections are given assigned phase values. However, 

that does not occur in usual direct procedures where 
only reflections with magnitudes larger than about 1.4- 
1.6 can be phased. This observation suggests an 
important peculiar property of (18): unlike Sayre's 
method, (18) is able to estimate tph both by using the 
available phase information, and by exploiting the 
information contained in diffraction magnitudes with 
unknown phases. 

Let us suppose for a moment that all the phases of 
measured cross reflections of the quartets in (18) are 
known. Then (18) reduces to the Von Mises dis- 
tribution (17) where 

tan gt = x/Q, 

2 O=---~ mh~j Rkgmh+kgCOS(~l)h+kj-- (Ok) 

T _  

-- 2 ~. wj Cj c o s  ( (Dh+k j+ l ) -  (pk I - -  ~01), 
J 

2 
V/~ R h ~  RkjRh+kjsin (~0h+kl-- ~Pk) 

-- 2 ~ wjCjsin((Oh+kj+,j--(Okj--(O O, (19) 
J 

al = [Q2 + T211,2. 

The conditions under which (19) holds are similar to 
those assumed for (8). As a consequence, cross 
magnitudes with unknown phases are not even used in 
(19). However, in (18) any magnitude is supposed to be 
known, while (19) takes account, via the coefficient w j, 
of the number of cross magnitudes really measured for 
any quartet. This information is not unimportant; in 
fact, depending on whether a cross reflection is 
measured or not, it forms or does not form triplets. This 
kind of balance of triplet and quartet contributions 
seems able to reduce the 'squaring' effect during phase- 
refinement procedures. Suppose now that the con- 
tribution of the I 0 functions in (18) cannot be neglected. 
If N is large enough we can expand the functions as 

Io(z) ~ 1 + z2/4 ~_ exp(z2/4) (20) 

and then we obtain the following approximate ex- 
pression: 

tan Oh m 2 Z Rk' Rh+kjsin (0h+k,-- Ok) 
J 

- 2 y Cj(wj-Jw~JR~ -Jw6JRg-JwTJS~) 
J 

(~0h+k,+lj--~Pk,--(/71)}/ ×sin 

2 Rh 
11 

- - ' ~  ~j RkjRh+kj 

X COS(~0h+kg--  (}Ok) - - " ' ' } '  (21) 
] 
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where .ie 5, JR 6, JR 7 are the cross magnitudes of the j th 
quartet..iw 5, Jw6, :w7 are always zero except when JR 5, 
JR 6, JR 7 are known and the phases unknown; in this 
case they are equal to unity. 

It is worth considering the use of (18) and (21). If 
(20) is used, (18) reduces to a Von Mises ditribution 
with a maximum given by (21). If N is large enough 
(tentatively >300, then (20) strictly holds and (21) 
gives a good estimation of (o~. From a practical point of 
view (21) is preferred because it is less time-consuming. 
If N is not too large (21) can overestimate the quartet 
with respect to the triplet contribution. In accordance 
with (13) it should then be convenient to replace C: in 
(21) by Cj/(1 + Q)), where 

Q~ = (e h ehj+ ebF'h+kj+l) JW5Je5 
+ (t~h '~1: + '~k., eh+kj+OJW6Je6 
+ (e h eh+k:b+ ekeOJW7Je7]/2N. (22) 

Q~ can be set to zero if it is found that Q~ < 0. 

8. Centrosymmetric space groups: a general formula 
using triplet and quartet relationships 

where: 
(i) P(Ehl... ) is the conditional probability dis- 

tribution of E h given any number of magnitudes and 
any set of phases; 

(ii) the first summation concerns all the triplets 
involving E h with reflections Ek? Eh+k, having known 
phase; 

(iii) the second summation concerns all the quartets 
Eh, having involving E h and reflections Ekj, Eli, +k,+/~ 

known phase. The coefficient wi is "1, 0, I 1 

depending on whether 3, 2, 1, 0 cross magnitudes of 
thejth quartet are known. 

(iv) the magnitudes R l, ..., Rp which appear in the 
arguments of the functions cosh correspond to the 
cross reflections of the quartets in (iii) provided their 
signs are unknown. 

Since R h is known, we are mostly interested in the 
sign S h o fE  h. Denoting 

1 
- ( + e l  e2 + e3 e , ) ,  

x//v 

1 
I+R,E3 + e2e4) , . . . ,  

Let us calculate in centrosymmetric space groups the 
conditional probability of (Oh when both the magnitudes 
in the first phasing shell of q, = ~Ph + (ok + (O~- (oh+k+~ 
and the phases (o k, (o|, (oh+k+J are known. Using the 
same notation as for (15) we obtain 

P(E~ IE2, E3, E4, R5, R6, R7) 

- -  exp - E 1 E 2 E 3 E 4 cosh (R 5 Xs) 
L -ff 

X cosh (R 6 X6) cosh (R 7 XT) , 

where 
1 

X 5 -- V @  (El  E2 + E 3 E4), 

1 
X 6 - v @  (El E3+ E2 E4), 

1 
X v -  v / ~  (E 2E 3 + E  1E4). 

By means of considerations similar to those developed 
for the non-centrosymmetrical case we obtain the 
general formula 

1 { [ - - ~ 2  P(Ehl...) ~_ ~ exp E h EkjEh+kj 
J 

x cosh (R l X1) . . .  cosh(RpXp),  (23) 

we obtain 

e ( S h =  + I...) ~ 1/{ 1 + exp(-2Q) 

x [cosh (R l X-f) l /[cosh(R 1X~+)] 

... [cosh(RpXp)l /[cosh(RpX[,)]} ,  

(24) 

where 

Q = R h EkjEh+k, 
J 

1 ~ WjEk, EI, Eh+k, +l,] (25) 
N ~ " Y 

If N is sufficiently large, we can expand cosh z 
according to 

cosh z _ exp (22/2) 

and then (24) reduces to 

P ( S  h = + I...) ~_ 0.5 + 0.5 tanh G, (26) 

where 

G _  
1 1 

vFN Z RhEk'Eh+kJ--'-N Z RhEk'EbEh+kj+b 
Y J 

X (wj--JWsJR2--Jw6J'R2--Jw7JR2). (27) 

The meaning of symbols in (27) is the same as in (21). 
In accordance with considerations made for (21), if N 
is not too large then (26) can overestimate the quartet 
with respect to the triplet contribution. Thus, Cj = 
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( l /N)  RhEkEbEh+kj+t: in (27) can be replaced by 
C j~(1 + Q~), where Q.~ is defined by (22). 

TRIPLET AND QUARTET RELATIONS 

9. A comparison with determinantal approaches in 
small structures 

The maximum-determinant rule was first applied by 
de Rango (1969) to solve the structure of trigonelline 
hydrate (Pi).  Although other applications have been 
made from time to time, only in recent years have more 
systematic applications of determinantal approaches to 
small structures been tried. 

Vermin & de Graaf (1978) successfully applied the 
rule to pyrocalciferol (P21, Z -- 2, N = 86). Taylor, 
Woolfson & Main (1978) combined Karle-Hauptman 
determinants with a magic-integers approach. Several 
tests on real structures proved that Karle-Hauptman 
determinants are very discriminating as figures of 
merit; however, their power is not sufficient to justify 
the amount of computing time they need. 

If the order of the determinant is much smaller than 
N, triplet and quartet contributions constitute the most 
important part in the evaluation of a Karle-Hauptman 
determinant. Let us calculate up to order 1/N the joint 
probability distribution of all the normalized structure 
factors which appear in a determinant D,, under the 
hypothesis that the reciprocal vectors are fixed and the 
positional vectors are the primitive random variables. 
In short notation we shall denote this distribution by 

P--P({Eh,+k}, {Eh,_h,}, i , j =  1,. . . ,n) .  

We obtain [see Heinermann, Krabbendam & Kroon 
(1979) and Heinermann, Kroon & Krabbendam 
(1979) for an expression obtained with a different 
hypothesis] 

1 { 2 
P _  7ff(n_ 1)/---"""" ~ exp --a  2 + - ~  Z Rh'*kRh'*kRh'-hJ 

X COS ((phi+ k -- (Phi+k-- (Phi-h i) 

2 
+ ~ Z Rh'-hjRh'-h~RhFh. c°s((ph'-h'- (ph,-ho 

2 
+ (phi-h) --'-~" Z Rh"+kRh'+kRh'-h'RhTh~ 

X COS ((ffhq+ k -  Oht*k "4- (Phi--h, "t- (phy-hq) 

2 
N Z RhFhqRh~-hpRht-hqRhj-hpCOS((phj-hq 

~t 

-t- (Ph,-hp- (ph,-hq- (phj-hp) + "' "~' (28) ) 
where A is the product of the n(n - 1)/2 magnitudes 
involved in D~ and e 2 is the sum of their squares. 

The coefficient --2/N of the quartet contributions is 
due to the fact that only two cross magnitudes per 

quartet are in the determinant. This means that Karle-  
Hauptman determinants are in general unable to exploit 
the information contained in the third cross reflections 
of the quartets. Unfortunately, they are also unable to 
exploit the information about the magnitudes of the first 
two cross reflections when their phases are unknown 
(the common practice is that of equating a reflection in 
D, to zero when its phase is unknown). 

If (28) is further developed, an expression similar to 
(18) can be obtained which also holds when the phases 
of some of the two cross reflections of the quartets in 
D, are unknown. In conclusion, a relationship such as 
(18) is a more flexible and powerful tool for estimating 
a phase (ph than a small-order Karle-Hauptman deter- 
minant. 
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